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Abstract

We present a time domain discontinuous Galerkin (TDDG)
method for electromagnetics problem that directly dis-
cretizes space and time by unstructured grids satisfying a
specific causality constraint. This enables a local and asyn-
chronous solution procedure. We show that the numerical
method is dissipative, thus ensuring its stability. Numerical
results show the convergence rate of 2p + 1 for energy dis-
sipation. We also investigate the choice of Riemann versus
average numerical fluxes for noncausal faces and demon-
strate that while the more dissipative nature of Riemann
fluxes may render it unsuitable for low order elements, it
provides a cleaner solution for high order elements.

1 Spacetime discontinuous Galerkin method

Figure 1. Spacetime discretiza-
tion used in the SDG method.

Figure 2. Patch-by-patch
solution procedure.

We present a spacetime discontinuous Galerkin (SDG)
method that directly discretizes the spacetime using un-
structured grids. Many exceptional properties of the
method stem from the use of causal meshes. For exam-
ple, in the fig. 1 the solution of element A depends only
on the solution of earlier elements B and C given that the
red facets are causal (fastest waves shown in arrows only
pass in one direction through the facet). The level-1 ele-
ments depend only on initial conditions and boundary con-
ditions for the elements D and E. The level-1 element solu-
tions can be computed locally and in parallel. Thus, causal
SDG meshes enable asynchronous, element-by-element so-
lutions with linear solution complexity.

We replace the individual elements in the 1d×time with
small clusters of simplicial elements called patches, where
only the exterior patch facets need to be causal as shown in

fig. 2 for clusters of tetrahedral elements in 2d×time. Using
an advancing-front procedure, in each step the TentPitcher
algorithm [1, 2] advances in time a vertex in the front mesh
to define a local front update; the causality constraint limits
the maximum time increment ∆ t at the vertex. We solve
new patches as local problems and update the current front,
until the entire spacetime analysis domain is solved.

2 EM formulation

While the formulation of the SDG method is outside the
scope of this manuscript, we briefly discuss the key com-
ponents of our formulation. The finite elements are dis-
cretized with discontinuous basis functions that form com-
plete polynomials of order p in spacetime. The electric
field E and magnetic field H are discretized and electric
and magnetic flux densities D and B are obtained from con-
stitutive equations. For example, for an isotropic material
D= εE and B= µH. As customary, only Ampère and Fara-
day laws from Maxwell’s equation are discretized from the
Maxwell’s equation. Since the basis functions are discon-
tinuous across element boundaries, both the partial differ-
ential equations and their corresponding jump conditions
are discretized and weakly enforced in an element Q and
its boundary ∂Q. After the application of Stokes theorem,
the discrete weak form is obtained,∫

∂Q

{(
Ê.D∗+ Ĥ.B∗

)
?dt +

(
Ê×H∗− Ĥ×E∗

)
?dx
}

+
∫

Q

{(
− ˙̂E.Dh−∇× Ê.Hh + Ê.Jh

)
+
(
− ˙̂H.Bh +∇× Ĥ.Eh

)}
ΩΩΩ = 000 (1)

where J is the electric current density. The .̂ and .h corre-
spond to weight and discrete solution fields, respectively.
The .∗ fields are target fields on element boundaries that are
obtained from the solution to a local Riemann problem. The
3-form Ω resembles the volume differential in Q and and
2-forms ?dx and ?dt can be related to spatial and temporal
components of normal vector times surface differential on
∂Q if spacetime normal vectors could be defined.

3 Numerical fluxes

For a noncausal d-manifold Γ in D , the characteristics pass
through the interface from the opposite side. In discrete



Figure 3. Different face types for spacetime elements.
Patches p1 and p2 include one and two elements.

setting, the interior facets of a patch can be noncausal. An
example is the interior faces of two elements in patch p2 in
fig. 3. For these faces the target solution depends on traces
from the two sides U±=(E±,H±) and the orientation of Γ .
Herein, we only consider solutions for isotropic materials
with electrical permittivities ε± and magnetic permeabili-
ties µ±. Impedance Z, admittance Y , and wave speeds c are
Z± = 1/Y± =

√
(µ/ε)± and c± = 1/

√
(µε)±. We con-

sider two choices of Riemann and average fluxes for target
values. Riemann fluxes are obtained by solving a 1D elec-
tromagnetic problem with initial conditions consistent with
the traces of the solution from the two sides of the inter-
face. The solutions for tangential components of E and H
on a noncausal interface, e.g., interior face of the patch p2
in fig. 3, are

n×ER = n× (Y E−n×H)−+(Y E+n×H)+

Y−+Y+
(2a)

n×HR = n× (ZH+n×E)−+(ZH−n×E)+

Z−+Z+
(2b)

where n is the spatial normal vector to an interface. In con-
trast, the average fluxes are the averages of the two sides,

n×ER = n× E−+E+

2
, n×HR = n× H−+H+

2
(3)

For both flux options, the normal components E1 and H1

are obtained by enforcing the continuity of D1 and B1
across the interface, based on Gauss divergence laws for
electric and magnetic field densities. For conventional DG
methods these fluxes are inactive as the noncausal interfaces
are conceptually vertical. However, for arbitrary nonverti-
cal noncausal facets in our spacetime grids, the side with
earlier solution specifies D1 and B1 which in turn provides
the target solutions for E1 and H1. For example in fig. 3
and for the interior interface of patch p2, the element e2
provides target solutions for D1 and B1.

4 Error norms

The spacetime electromagnetic energy flux NNN := uuu+SSS com-
bines electromagnetic energy density form uuu = 1

2 (E.D +
H.B)?dt and Poynting form SSS := EEE ∧HHH = E×H?dx. The
energy dissipation for an arbitrary spacetime volume Q is,

∆Q :=−
[∫

∂Q
NNN(UUU∗)+

∫
Q

RRRN

]
(4)

where UUU∗ is the physically correct flux on ∂Q the boundary
of Q and RRRN := E.JΩΩΩ is the energy balance source term.
In discrete setting NNN is expressed in terms of target fluxes
for UUU∗ which are obtained from (2) or (3) and energy dis-
sipation in fact can be nonzero. Through a relatively long
derivation that uses certain symmetries of constitutive pa-
rameters for a bi-anisotropic material one can show,

∆Q =−
∫

∂Q

1
2
(JEKJDKJHKJBK)?dt + JEK× JHK?dx (5)

where JEK = E∗−Eh is the jump between the target flux
on the boundary of a spacetime element Q and the trace
of interior discrete solution Eh and same applies to other
fields H,D,B. To prove non-negativity of (5) we consider
all different cases of element facets, as shown in fig. 3. On
causal outflow facets target solutions are equal to element
solutions, .∗ = .h so the contribution of outflow facets to
the right hand side (RHS) of (5) is zero. The faces on the
boundary of the domain are vertical and only JEK×JHK?dx
is present. This term is zero as one of both JEK and JHK are
zero for any given direction for all the common forms of
boundary conditions. For the inflow facets, the target values
are set to the earlier traces from neighbor inflow element or
initial condition. The non-negativity of (5) is proven by
using the causality, i.e., shallow slope, of the inflow facet.
For interior (noncausal) faces, there are two cases. First,
if there is a material interface the face is vertical and simi-
lar to domain boundary faces only JEK×JHK?dx is present.
By directly plugging Riemann solutions, one can observe
that this term is non-negative so the energy dissipation on
an interior face is. For nonvertical noncausal faces, the nor-
mal components E1, H1, D1, B1 are also present through
the first term in (5). The proof of non-negativity of the in-
tegrand for these faces uses the facts that D1 and B1 are
enforced with respect to earlier solution and that the two
sides are the same material (Z− = Z+). Since the inte-
gral is nonnegative for all face types so is the dissipation
for one element Q. The total energy dissipation over D ,
denoted by ∆ , is given by ∆ := − [

∫
∂D NNN(UUU∗)+

∫
D RRRN ] =

∑Q∈Ph
∆Q ≥ 0 Since ∆Q ≥ 0 so is ∆ , hence the method is

dissipative and energetically stable.

When average fluxes (3) are used, the dissipations on the
two sides of an interior noncausal face are opposite of each
other. With Riemann fluxes the energy dissipation is non-
negative on each side whereas with Average fluxes the sum
of dissipation for this face from the two sides is zero. This
implies a more dissipative nature for the Riemann flux op-
tion. On the other hand, we no longer have non-negative
dissipation per element with average fluxes. Instead the
weaker non-negativity condition is satisfied per each patch
P of elements, which again clearly guarantees the do-
mains non-negative dissipation as ∆ can also be expressed
as ∆ = ∑P ∆P ≥ 0.

5 Convergence studies

For convergence studies of the method we use the analytical
solution, E = E cos(ωt−k.x) H = H cos(ωt−k.x) with



a wavenumber vector k with |k| = 1 and frequency ω =
c|k|. The wave speed c = 1/

√
εµ = 1 for a domain with

ε = 1, µ = 1. The eigenvectors E ,H , and k are mutually
orthogonal and different values are chosen for different 1D
to 3D electromagnetic formulations.

Figure 4 presents the convergence of SDG solutions with
respect to energy dissipation ∆ for d = 1 to 3. The hori-
zontal axis of all the plots corresponds to h the element size
for the uniform grids used. The elements are interpolated
with complete polynomials in spacetime of order p. For
example, in E2×R the solutions for E and H of a p = 2
cover the space spanned by {1, x1, x2, t, x2

1, x1x2, x1t, x2
2,

x2t, t2}. While the convergence rates are slightly higher for
d = 2 and slightly lower for d = 3, in general the results
confirm the predicted convergence rate of 2p+ 1. In com-
parison a convergence rate of 2p−1 for energy dissipation
was reported for elastodynamic problem in [3]. In the latter,
terms appearing in energy dissipation were derivative of the
primary field displacement, while in electromagnetics for-
mulation E and H appearing in (5) are directly interpolated.
This explains the higher convergence rate.

Figure 4. Energy dissipation convergence rates for the ap-
proximation of a smooth solution for d = 1,2,3.

5.1 The choice for target values

The main purpose of this section is to study the impact of
the choice of target fluxes on discrete solution. Some re-
sults in the literature, cf. e.g., [3], suggest that for problems
with infinitely smooth solution there is not much difference
in the solutions obtained from average and Riemann flux
options. That is why we choose a problem with strong
discontinuities in E and H fields induces by propagation
of a step function and its transition/reflection at a bimate-
rial interface. This 1D problem involves a domain of unit
length with two different materials with εl = 1,µl = 1 and
εr = 10,µr = 1 on the left and right side of an interface at
xI = 0.5. The domain is loaded from the left side with a
boundary condition E3 = 1. We compare the convergence
of solutions, by uniform h-refinement or p-enrichment, at
target time t f = 0.8.

Figure 5. Convergence of E3 with uniform h-refinement
for the 1D problem with nonsmooth solution and p = 4.

Figure 5 shows how the results for both flux options tend
to the exact solution through uniform h-refinement for el-
ement polynomial order p = 4. In fig. 5 we observe that
the solutions with Riemann flux option are much better
in the middle segment, especially for coarsest grids with
log2(1/h) = 5,6. Obviously, in either case the solutions get
more accurate as element size decreases.

Figure 6 depicts the convergence of the solution for E3 for
mesh size h= 1

32 and various polynomial orders. Compared
to fig. 6a), and similar to previous case, we observe that the
results with average flux in fig. 6b) contain large zones of



high oscillation particularly in the middle segment. In ei-
ther case, as expected the solutions tend to the exact solu-
tion by p-enrichment.

Figure 6. Convergence of E3 with uniform p-enrichment
for the 1D problem with nonsmooth solution and h = 1

32 .

Figure 7. Comparison of solutions with different flux op-
tions and p = 0,h = 1

128 .

The fact that the solutions with Riemann fluxed are more
damped and less oscillatory can be viewed in the next two
figures. In fig. 7 results for p = 0 and h = 1

128 are com-
pared between Riemann and Average flux options. There is
a slight overshoot and undershoot in E3 and H2 near x= 0.2
for Average flux option, however other than that, in this case
the solutions from Average flux option are more accurate as
the solutions with Riemann flux option are overly damped.
Figure 8 compares the solutions now for the high poly-
nomial order p = 9 at the mesh resolution h = 1

32 around
x = 0.2. In this case, we observe that for both E3, H2 the
solutions obtained with Riemann flux option much more
closely follow the exact solution line; in contrast, those ob-

tained with Average fluxes show a wider oscillations around
the constant solution value for x > 0.2.

Figure 8. Comparison of solutions with different flux op-
tions and p = 9,h = 1

32 .

6 Conclusions

We have presented a spacetime discontinuous Galerkin
method for linear electromagnetics. If elements can be ar-
ranged in small patches of elements whose exterior bound-
aries inside the spacetime domain are causal, the solution
process is asynchronous and local with linear complexity
in terms of number of elements. We provided a sketch of
the method’s stability by showing that discrete dissipation
is equal to an integral on the facets of the elements that
is a function of jump terms between target solutions and
their corresponding interior traces of the solution. The in-
tegral can be shown to be nonnegative for different types
of element facet, thus implying the method’s energetic sta-
bility. We compared the choice of Riemann versus average
fluxes on noncausal faces of elements by studying the solu-
tion of a problem with strong discontinuities in electromag-
netic fields. It was demonstrated that the Riemann fluxes
resulted in overly dissipated solutions for low polynomial
orders, but at high orders they outperformed average flux
option by yielding smoother solutions.
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